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1 Introduction

This note is an introduction to the Bayes factor via an example based on
the following problem: the main experiment observes events with a Poisson
rate that derives from a signal of cross section s (with acceptance ε) and
background b. Information about ε and b derives from Poisson subsidiary
measurements:

n ∼ Pois(εs + b) (main measurement)
y ∼ Pois(tb) (subsidiary background measurement)
z ∼ Pois(uε) (subsidiary acceptance measurement)

Constants t and u relate the number of events observed in the subsidiary
measurements to the expectation for background and acceptance in the main
experiment. The ε parameter, not constrained to be ≤ 1, is actually accep-
tance times integrated luminosity. See [1] for a review of the performance of
parameter estimation methods (upper limits on the parameter of interest s)
for this problem.

The question addressed here is one of significance, or hypothesis testing:
having observed (n, y, z), one would like to access the evidence for discovery.
The traditional frequentist threshold for discovery in HEP is 5σ significance.
The Bayesian approach to hypothesis testing involves calculating the Bayes
factor. Further discussion of Bayes factors can be found in [2].

As the reader will discover, prior selection for the Bayes factor in the triple
Poisson example treated here is quite challenging. It is not anticipated that
the Bayes factor will be much used at CDF, which is approaching the end of
data taking, but there is serious discussion at the LHC of using the Bayes
factor in addition to the more familiar p-value approach. The rationale is that
providing both a frequentist and a Bayesian answer instills confidence in cases
where they agree, and caution when they disagree. As the conclusions in this
note indicate, the Bayes factor may prove too problematical for widespread
use except in the simplest of cases.

2 The Likelihood Ratio

The frequentist approach (i.e. significance) requires the selection of a statistic
that quantifies the disagreement between the observed data and the null
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hypothesis, which is taken in this case to be s = 0. The likelihood ratio λ is
the preferred statistic in the frequentist approach, in this case it is

λ =
likelihood with s = 0, maximized w.r.t. ε, b

likelihood maximized w.r.t. s, ε, b

and therefore 0 ≤ λ ≤ 1. The likelihood L is given by

L(s, ε, b) =
e−(εs+b)(εs + b)n

n!

e−tb(tb)y

y!

e−uε(uε)z

z!

The maximizations required to calculate the likelihood ratio can be easily
carried out analytically in this simple example. The result is

λ =
L(0, z/u, (n + y)/(t + 1))

L(u(n− y/t)/z, z/u, y/t)

where it notable that ε = z/u is obtained both under the restricted maxi-
mization (with s = 0) and the unrestricted maximization.

We then have

λ =

(
n+y
t+1

)n+y

nn
(

y
t

)y

We have not restricted the range of maximization for the denominator of the
likelihood ratio to s ≥ 0; should that restriction be desired, we have λ = 1
when n ≤ y/t.

Thus, in this example, the likelihood ratio is independent of z (the re-
sult of the subsidiary measurement for the acceptance). Under frequentist
repetitions of (n, y, z) for the null hypothesis, the probability distribution of
neither n nor y depend on the true value of ε, so the distribution of λ under
the null will only depend on the assumed true value of b. We would prefer
the distribution of λ to also be independent of b, and it turns out that this is
asymptotically true; for b � 1, −2 ln λ is approximately χ2 distributed, here
with one degree of freedom, independent of the actual value of b.

3 Bayes Factor

The Bayes factor B in this case is by definition

B =
likelihood with s = 0, marginalized over ε, b

likelihood marginalized over s, ε, b

which is quite similar in spirit to the definition of the likelihood ratio, with
Bayesian marginalization replacing maximization. Here marginalization im-
plies multiplying the likelihood by a prior, then integrating.
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Before selecting priors, we will reparametrize s and b in terms of new
parameters ρ and µ where s = µρ/ε and b = µ(1 − ρ)/(t + 1). The inverse
transformation is given by µ = εs + (t + 1)b and ρ = εs/(εs + (t + 1)b), so
0 ≤ ρ ≤ 1 and µ ≥ 0.

This reparametrization is a typical approach, taking advantage of the
duality between two independent Poissons (variates n and y in our problem)
and a single Poisson on the overall n + y with a binomial determining the
distribution of n for fixed n + y. Jeffreys uses this approach in his example
“Test for consistency of two Poisson parameters” worked out in [3], which is
similar to our problem.

The Bayes factor, with this reparametrization, is then

B =
likelihood with ρ = 0, marginalized over ε, µ

likelihood marginalized over ρ, ε, µ

The likelihood as a function of the new parameters is

L(ρ, ε, µ) =
e−µ tρ+1

t+1 [µ tρ+1
t+1

]n

n!

e−µt 1−ρ
t+1 [µt1−ρ

t+1
]y

y!

e−uε(uε)z

z!

The marginalization step requires selection of priors. We assume that the
joint prior factors in the form π(ρ, µ, ε) = π(ρ)π(µ, ε), and observe that the
marginalization integrals over µ and ε cancel between numerator and denom-
inator of the Bayes factor (for any choice of π(µ, ε) whatsoever) yielding

1

B
=
∫ 1

0
(tρ + 1)n(1− ρ)yπ(ρ)dρ

3.1 an attractive but ultimately unsuccessful choice of
prior

A convenient form (see discussion in sec 3.2) for the remaining prior is

π(ρ) =
Γ(α + β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1

which is a beta distribution, a proper distribution defined on the interval
[0, 1] having mean α

α+β
and variance αβ

(α+β)2(α+β+1)
. This yields ([4] eq 15.3.1)

1

B
=

Γ(α + β)Γ(y + β)

Γ(β)Γ(y + α + β)
F (−n, α; y + α + β;−t)

where F is the hypergeometric function. A prior flat in ρ is the special case
with α = β = 1.

In sec 3.5 the beta prior will be shown to be problematical when t is large,
leading us to pick a more general form for the prior in sec 3.6.
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3.2 prior discussion

We would like to see what our choice of prior for ρ implies for the prior for s
and b. As B was independent of priors for ε and µ, we did not need to select
any prior for those parameters. We will now try the choice

π(ρ, µ, ε) ∝ ρα−1(1− ρ)β−1µγ−1π(ε)

and calculate the transformed prior. Calculating the Jacobian yields

dµ dρ =
ε(t + 1)

εs + (t + 1)b
ds db

and we obtain

π(s, b, ε) ∝ sα−1bβ−1εαπ(ε)

[εs + (t + 1)b]α+β−γ

By picking γ = α + β, we can reduce it to

π(s, b, ε) ∝ sα−1bβ−1εαπ(ε)

which is a familiar form, often used in the estimation of the parameter of
interest s. Choosing the beta distribution as the prior for ρ was motivated
by this connection.

However, this is puzzling, as it seems that via a simple transformation
we have succeeded in using an improper prior for s, a parameter that is
marginalized under only one of the hypotheses. But under the alternative
(s = 0) hypothesis, we have µ = (t + 1)b, and the prior π(µ, ε) ∝ µα+β−1π(ε)
transforms to π(b, ε) ∝ bα+β−1π(ε). This is inconsistent with the form we
obtained for π(s, b, ε). So the transformation to variables (s, b, ε) is not a
success; we end up with different priors for b under the two hypotheses. At
best, then, we have provided some plausibility for choosing a beta distribution
as the prior for ρ; it can’t be derived rigorously from our favored (improper)
prior for s.

3.3 the hypergeometric function

For complex w with |w| < 1, the hypergeometric function (specifically Gauss’
hypergeometric function) is defined by its power series

F (a, b; c; w) = 1+
ab

c

w

1!
+

a(a + 1)b(b + 1)

c(c + 1)

w2

2!
+

a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

w3

3!
+· · ·

and outside that range by analytic continuation. We don’t have to worry
about the case where c is a nonpositive integer in our example. For the
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special case of nonpositive integer a, the series terminates, and F becomes a
polynomial in w of degree −a (and the restriction |w| < 1 is lifted).

The closely related function

2F0(a, b; ; w) = 1+ab
w

1!
+a(a+1)b(b+1)

w2

2!
+a(a+1)(a+2)b(b+1)(b+2)

w3

3!
+· · ·

only converges when a or b is a nonpositive integer, otherwise it diverges for
all |w| > 0.

3.4 Bayes factor vs p-value

The Bayes factor gives the ratio of posterior to prior odds in the Bayesian
approach, and is intended to be interpreted directly, rather than be converted
into a p-value. Nevertheless, it is interesting to see what Bayes factor corre-
sponds to ∼ 5σ p-value in this problem. There are, however, many methods
of p-value calculation that can be applied to this problem. The conditioning
method [5] is one possibility. In this method, one calculates the p-value con-
ditioned on the observed n + y, which converts the probability into that of a
binomial distribution. One obtains

pcond =
1

(1 + t)n+y

y∑
j=0

(n + y)!

(n + y − j)!

tj

j!

for the p-value. The conditioning method is perhaps not optimum for dis-
covery purposes (being more conservative than necessary due to the discrete
nature of the binomial distribution), but it leads to a simple analytic ex-
pression for the p-value. We also try the supremum method [6] using the
(restricted) likelihood ratio statistic, which has more power, but is more
difficult to implement. (Both the conditioning method and the supremum
method are fully frequentist.)

The value of B corresponding to 5σ discovery in this example is about
10−5. This is illustrated with a few examples in the following table for the
case with t = 4, α = 1, β = 1:

n y B pcond psup

10 1 0.87e−5 9.22e−7 2.42e−7
11 2 1.15e−5 10.7e−7 5.95e−7
14 5 1.00e−5 6.80e−7 5.37e−7
18 10 0.86e−5 4.24e−7 2.42e−7
23 18 1.03e−5 3.74e−7 2.42e−7
26 23 0.92e−5 2.92e−7 1.60e−7
28 27 1.11e−5 3.22e−7 1.76e−7
7 12 0.733 0.068 0.045
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Examining more extensive tables, one does not find any strong disagreements
between the Bayesian approach and the frequentist in this example; nothing
stands out that would lead one to draw different conclusions from the two
approaches. The last line in the table illustrates the fact that a 5% p-value
provides very little evidence against the null hypothesis, but in HEP this is
already well understood.

3.5 the large t limit

There is one sign of trouble though; the behavior of our expression for B as
t → ∞. The likelihood ratio has a well defined limit when we let y = b0t,
b0 > 0 representing the true value of b

lim
t→∞

λ = en−b0

(
b0

n

)n

which is exactly the value we would have obtained with a fixed background
b0. Similarly, the limiting value of pcond is given by

lim
t→∞

pcond = e−b0
∞∑

j=n

bj
0

j!

as expected. The limit of our Bayes factor, however, is

lim
t→∞

B = lim
t→∞

Γ(β)(b0t + β)α

Γ(α + β) 2F0(−n, α; ;−1/b0)
= ∞

which blows up because ([4] eq 6.1.47)

Γ(y + α + β)

Γ(y + β)
' (y + β)α

as y becomes large (it becomes an equality when α = 1).
Thus, as t becomes large, the null (s = 0) hypothesis becomes more and

more favored. This, of course, is pathological for our intended use, but it can
be explained. After reparametrization, our null hypothesis, which had been
s = 0, has been changed to ρ = 0, and because of our definition of ρ as the
fraction of all events in the main and subsidiary background channels due to
the signal; letting t → ∞ automatically forces ρ → 0, even if s is finite. A
flat prior, for example, for ρ is therefore inconsistent with the large t limit
(independent of the true value of s). The Bayes factor responds rationally,
but its logic was perhaps not initially obvious.

Interestingly, neither λ nor pcond suffer from s = 0 vs ρ = 0 ambiguity in
this example. The likelihood ratio is invariant under reparametrization, and
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although pcond is conditional on n + y, which becomes infinite in the limit
t →∞, the desired limiting behavior for pcond is still obtained.

Because of the remaining freedom in choosing the prior for ρ, we can
attempt to include the extra insight that our prior should be concentrated
near ρ = 0 for large t. This can be done in our beta distribution ρ-prior, for
example, by choosing β = β1t + β0 for constant β1 and β0. This modifies the
limit of B to

lim
t→∞

B =
(b0/β1 + 1)α

2F0(−n, α; ;−1/(b0 + β1))

which seems more promising. But there is still trouble when b0 � β1 and
t is large, since in that case the Bayes factor loses its dependence on b0—it
seems that a simple beta prior for ρ is not adequate to cover all cases. We
need a different prior.

3.6 a modified prior

Reference [7] computes a Bayes factor for a simplified version of this problem
with ε = 1 fixed and b also fixed (i.e. single Poisson); the prior for s is
constructed using an algorithm that yields an “intrinsic” prior π(s) ∝ (s +
b)−2, where the label “intrinsic” identifies the particular procedure employed.
The intrinsic prior is not unique, being itself derived from an underlying
estimation prior which is not unique.

The failure of our beta prior for ρ in the calculation of the Bayes factor
is not actually unexpected or surprising. Quoting from [7]:

In Bayesian hypothesis testing and model selection, however, de-
termination of suitable prior distributions is considerably more
challenging, in part because it is typically the case that improper
prior distributions cannot be used (or at least have to be used
very carefully). Use of ‘vague proper priors’ (another staple of
many Bayesians in estimation problems) is even worse, and will
typically give nonsensical answers in testing and model selection.
There has thus been a huge effort in statistics to derive objective
(or at least conventional) priors for use in hypothesis testing and
model selection.

In our triple Poisson case, the s+ b of the intrinsic prior of [7] generalizes
to εs + b, which is proportional to tρ + 1 in our transformed (ρ, µ) system.
This suggests generalizing our prior for ρ to

π(ρ) =
Γ(α + β)

Γ(α)Γ(β)F (−δ, α; α + β;−t)
ρα−1(1− ρ)β−1(tρ + 1)δ
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which is proper for any value of δ provided α > 0 and β > 0. When δ is
negative this has the behavior we desire, forcing the prior to peak at zero
when t is large. With this modified prior, the Bayes factor for our case
becomes

B =
Γ(β)Γ(y + α + β)F (−δ, α; α + β;−t)

Γ(α + β)Γ(y + β)F (−n− δ, α; y + α + β;−t)

For judicious choices of α, β, and δ, we will see that this expression for B has
reasonable behavior in the limit of large t. For simplicity, we will begin with
a few special cases where δ is an integer. The case δ = 0 has already shown
to be pathological, so we start with δ = −1, α = β = 1/2, which yields

B =

√
πΓ(y + 1)(1 + t)−1/2

Γ(y + 1/2)F (−n + 1, 1/2; y + 1;−t)

whose limiting value at large t is given by

lim
t→∞

B =

√
πb0

2F0(−n + 1, 1/2; ;−1/b0)

which seems fine (we ignore the case n = 0 for now). Selecting δ = −2,
α = β = 1, we get

B =
(y + 1)(1 + t)−1

F (−n + 2, 1; y + 2;−t)

whose limiting value at large t is given by

lim
t→∞

B =
b0

2F0(−n + 2, 1; ;−1/b0)

which agrees exactly with the result of [7].
A case that behaves badly is δ = −1, α = β = 1. The resulting Bayes

factor is

B =
(y + 1) ln(1 + t)

t F (−n + 1, 1; y + 2;−t)

which diverges logarithmically at large t.
So our modified prior is more promising than the beta prior, although care

still needs to be taken. The special cases examined above used integer values
of δ; for non integer values, one can apply transformations ([4] eqs 15.3.4–
5) to the hypergeometric functions in the numerator and denominator that
yields

B =
Γ(β)Γ(y + α + β)F (α + β + δ, α; α + β; t/(t + 1))

Γ(α + β)Γ(y + β)(1 + t)n+α+δF (−n− δ, y + β; y + α + β; t/(t + 1))
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which is a suitable form when 0 < −α − δ < n and t is large to speed
numeric convergence of the series representation of the hypergeometric func-
tion. However, when n is large, this power series will be numerically unsta-
ble, as successive terms become large in magnitude but opposite in sign. For
0 ≤ n < −α− δ

B =
Γ(β)Γ(y + α + β)F (α + β + δ, α; α + β; t/(t + 1))

Γ(α + β)Γ(y + β)F (y + n + α + β + δ, α; y + α + β; t/(t + 1))

converges faster at large t, and may be the only usable form when n is large.
The limiting value is given by

lim
t→∞

B =
Γ(−α− δ)

Γ(−δ)U(α, 1 + n + α + δ, b0)

This may be derived by applying the transformation given in eq 15.3.6 of [4]
and observing that the limit as t → ∞ yields the confluent hypergeometric
function U of eq 13.1.3 in [4]. The behavior at large t is divergent when
α+ δ ≥ 0. Equations 13.5.6–12 in [4] give the behavior of U(a, b, z) for small
|z|. For n = 0, we have

lim
t→∞

B ' 1

when b0 is small (as long as α + δ < 0), which is not unreasonable, although
intuitively, one might prefer B > 1 under these conditions. For n = 1, we
find that limt→∞B ' 1 when α+δ < −1 and b0 � 1, which is not reasonable;
when the background is known to be small, even one event in the signal bin
strongly favors the signal hypothesis. To prevent this pathology in the n = 1
case, we must require −1 < α + δ < 0; when we have (for b0 � 1)

lim
t→∞

B =
Γ(−α− δ)Γ(α)b1+α+δ

0

Γ(−δ)Γ(1 + α + δ)

where, by adjusting α and δ, we can still get a wide range of behavior.

3.7 behavior with small background uncertainty

For constant y/t (estimated background) we want B to decrease monoton-
ically as y increases. This does not always hold; the following table shows
a case with 10 observed events and an estimated background of y/t = 1
in which B reaches a minimum at a background uncertainty of ∼ 5%, and
increases as the background uncertainty drops further.
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n y t α β δ B
10 1 1 0.9 0.9 −1 3.84e−2
10 10 10 0.9 0.9 −1 7.20e−5
10 100 100 0.9 0.9 −1 7.58e−6
10 1000 1000 0.9 0.9 −1 6.88e−6
10 10000 10000 0.9 0.9 −1 7.89e−6
10 100000 100000 0.9 0.9 −1 8.86e−6
10 1000000 1000000 0.9 0.9 −1 9.66e−6
10 ∞ ∞ 0.9 0.9 −1 1.27e−5

This behavior is clearly pathological. Extensive numerical checking indicates
that to avoid this pathology, one must have −α − δ ≥ 1/2 (numerically
the β parameter does not influence this behavior). Acceptable behavior is
illustrated here:

n y t α β δ B
10 1 1 0.5 0.5 −1 4.68e−2
10 10 10 0.5 0.5 −1 1.24e−4
10 100 100 0.5 0.5 −1 1.28e−5
10 1000 1000 0.5 0.5 −1 9.42e−6
10 10000 10000 0.5 0.5 −1 9.12e−6
10 100000 100000 0.5 0.5 −1 9.095e−6
10 1000000 1000000 0.5 0.5 −1 9.0920e−6
10 ∞ ∞ 0.5 0.5 −1 9.0916e−6

3.8 behavior when B > 1

We next investigate the behavior in the regime where the Bayes factor favors
the s = 0 hypothesis. First we look at the case where y = 1, t � 1, and n is
small (i.e. n � 1/t). This corresponds to a large background estimate with
a large uncertainty, where we don’t expect either hypothesis to be strongly
favored. The Bayes factor is (α + β)/β to high precision in this case, which
favors the s = 0 hypothesis. By adjusting α and β we can make B quite large
in this case, but that would seem undesirable; with essentially no information
about rate of background, we don’t want the null hypothesis to be strongly
favored. We therefore, somewhat arbitrarily, require that β ≥ α so that
B ≤ 2 in this limit.

We can also look at a case where the observed n and y are consistent with
s = 0 to high precision. At smaller values of −δ the behavior shows slow
growth of B with increasing n = y, as seen here:
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n y t α β δ B
1 1 1 0.5 0.5 −1 1.41

10 10 1 0.5 0.5 −1 2.29
100 100 1 0.5 0.5 −1 3.94

1000 1000 1 0.5 0.5 −1 6.93
10000 10000 1 0.5 0.5 −1 12.27

100000 100000 1 0.5 0.5 −1 21.80
1000000 1000000 1 0.5 0.5 −1 38.76

Larger values of −δ lead to much more rapid growth of B:

n y t α β δ B
1 1 1 1.5 1.5 −2 1.30

10 10 1 1.5 1.5 −2 2.99
100 100 1 1.5 1.5 −2 11.77

1000 1000 1 1.5 1.5 −2 58.61
10000 10000 1 1.5 1.5 −2 316.8

100000 100000 1 1.5 1.5 −2 1759
1000000 1000000 1 1.5 1.5 −2 9854

Some growth of B with increasing n = y, eventually reaching B � 1, is un-
avoidable in the Bayesian scheme—as the measurement achieves ever higher
precision, one can effectively separate an ever larger fraction of the prior en-
sembles for the two hypotheses. The rate of growth of B, being determined
by the prior, is under our control, and we prefer the lower growth rate asso-
ciated with δ ' −1. This is a prejudice, not a necessity, but it is probably
shared by most physicists.

4 Summary

4.1 likelihood ratio

The likelihood ratio λ can be considered analogous to the Bayes factor B,
although by definition λ ≤ 1, while no such restriction applies to B. For the
triple Poisson problem considered in this note,

−2 ln λ = 2n ln n + 2y ln(y/t)− 2(n + y) ln((n + y)/(t + 1))

is approximately distributed as a χ2, in this case with 1 degree of freedom, ap-
proximately independent of the true value of the background b, provided that
b � 1. Significance ≥ 5σ in this approximation then requires

√
−2 ln λ ≥ 5,

equivalent to λ <∼ 3.7× 10−6. See [8] for more discussion of this approach.
Note that λ is not a p-value; the corresponding p-value for a 5σ excursion

(of either sign) is ∼ 5.7× 10−7.
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4.2 Bayes factor

The free parameters in our prior π(ρ), α, β, and δ, need certain constraints
to avoid pathologies or unwanted behavior. The ones described above reduce
to

• 0 < α ≤ β

• 1/2 ≤ −α− δ < 1

• 1/2 < −δ ≤∼ 1.5

There is no guarantee of reasonable behavior everywhere in this range; in
particular, values of α too close to zero should be avoided. Choosing α ' β
seems reasonable.

The calculationally simplest choice satisfying these constraints is α = β =
1/2, δ = −1, when the Bayes factor is given by

B =

√
πΓ(y + 1)(1 + t)−1/2

Γ(y + 1/2)F (−n + 1, 1/2; y + 1;−t)

where F , when n > 0, reduces to a simple polynomial in t of degree n − 1.
When n = 0

B =

√
πΓ(y + 1)

Γ(y + 1/2)F (y, 1/2; y + 1; t/(t + 1))

can be used; the power series should converge relatively quickly. When n = 0,
y = 1, it reduces to B = 1 + 1/

√
t + 1.

In the next table we show
√
−2 ln λ at approximately constant B for

increasing n and y (t fixed). The general trend is that after reaching a
minimum,

√
−2 ln λ increases slowly as n and y increase for constant B.

n y t α β δ B
√
−2 ln λ

6 2 20 0.5 0.5 −1 1.06e−5 5.27
12 27 20 0.5 0.5 −1 1.00e−5 5.25
13 33 20 0.5 0.5 −1 9.74e−6 5.25
20 86 20 0.5 0.5 −1 9.92e−6 5.24
50 415 20 0.5 0.5 −1 1.02e−5 5.25

100 1102 20 0.5 0.5 −1 1.03e−5 5.26
1000 16730 20 0.5 0.5 −1 1.06e−5 5.34

10000 189050 20 0.5 0.5 −1 1.08e−5 5.44

The consequence is that, if one uses a particular fixed cutoff value of B for
“discovery”, there is no corresponding significance p-value, but there is a
corresponding maximum p-value. In the case shown, B ' 10−5 implies a
p-value based significance ≥∼ 5.24σ.
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5 Conclusions

1. The choice of (objective) priors in the calculation of the Bayes fac-
tor is a delicate issue; priors successful for parameter estimation may
nevertheless prove pathological when applied to calculating the Bayes
factor. In my judgment, in high energy physics there is insufficient
experience in selecting priors for Bayes factor calculations, the conse-
quences of which require extensive scrutiny, and is better left in the
hands of professional statisticians.

2. It is essential that any prior that does not appear in both the numera-
tor and denominator of the Bayes factor calculation be proper; the use
of an improper prior in the Bayes factor calculation can only succeed
if it is present under both hypotheses. This is in contrast to Bayesian
parameter estimation, where improper priors often lead to proper pos-
teriors.

3. The Bayes factor’s exact independence of the choice of prior for the nui-
sance parameters µ and ε common to both hypotheses in this example
is fortuitous, but one can hope for at least approximate independence
in most cases.

4. In this example, the calculation of the Bayes factor is arguably actually
easier than the calculation of the p-value, once the difficult issue of
choosing a prior is settled. This is clearly not always true, but in more
intractable cases, the likelihood ratio might be used as the main term
in an approximation of the Bayes factor in an approach known as the
Bayesian Information Criterion (BIC).

5. The Bayes factor can be viewed as a qualitative check of a p-value
calculation, or vice versa; a qualitative disagreement between conclu-
sions derived from a Bayes factor and a p-value in a particular problem
necessitates deeper scrutiny of both calculations. Quoting from Jef-
freys’ discussion of the relative performance of Bayes factors (Jeffreys’
“significance tests”, the approach he greatly preferred) vs p-values (as
employed by Fisher) in hypothesis testing:

I have in fact been struck repeatedly in my own work, after
being led on general principles to a solution of a problem, to
find that Fisher had already grasped the essentials by some
brilliant piece of common sense, and that his results would
be either identical with mine, or would differ in cases where
we should both be very doubtful. As a matter of fact I have
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applied my significance tests to numerous applications that
have also been worked out by Fisher’s, and have not yet found
a disagreement in the actual decisions reached. ([3] p 393)

Although it is hoped that Bayes factors may eventually become useful
in high energy physics, providing second opinions on questions of sig-
nificance, before issues of prior selection become routine it is difficult
to recommend the use of Bayes factors in anything but the simplest of
contexts.

6. In the example of this note, a common scenario in HEP, B ' 10−5

corresponds very roughly to≥ 5σ significance (where B is defined as the
factor in favor of the s = 0 hypothesis). But a more precise statement
is not possible because of the remaining freedom in choice of prior for
s.
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